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ABSTRACT 

The  kinetic  cwc~rg.~ of thv horiaont:rl, hydrostatic flow is divided  into  the  kinetic  energies of the  vertically  inte- 
grated flow and the  deviation  from  this flow, thc so-called shear flow. The  energy  transformation  between  the  two 
types of flow is found ill the gencxral case of the  primitive  equations  and  also  for  the  most  simple  quasi-non-divergent 
model.  The  two  transformatiolls  are  discussed,  and  the  energy  transformation  in  the  quasi-non-divergent  model in 
the  two-parameter cas(,  is discuswd as a function of wave  number  using  linear  theory.  The  energy  conversion  has 
been computed  on a daily basis for  the  month of January 1959, and  compared  with  earlier  results of computations 
of transformations  between  availablc  potential csnergy and  shear flow kinetic  energy. It is shown that  the  latter 
conversion  changes  the  kinrtic  energy of the shvar flow and  not  that of the  mean flow. The residence time is esti- 
mated  for  the  shear f l o ~  as \w11 as  the  nwan flow. 

The  energy  transformation  hetwwn  the  vertical s h a r  flow and mean flow due  to  the  non-divergent  and  diver- 
gent flow has been compntcd in the ~vave-number regime  for  the  first IO zonal wave numbers for each  day  in  January 
1950. It is found  that  the c'nergy conversion  hetwccn shcar flow and  mean flow  is about 30 percent of the conver- 
sion between  the  availablc  potential cnrrgy and t,he shcar flow kinetic  energy. 

A further rrnnlt is that  thr  rnergy  conversion  betwern  the  shear flow and  the  mean flow due  to  the  divergent 
part of thc flow is rstil~lated  to IIP ~legativr a ~ l d  ahout 70 percollt of thc  conversion  due  to  the  non-divergent  part of 
the flow. 

The  energy  couvcrsion as a function of \v:tv(: ~ ~ t ~ r n b e r  SIIOTVS a m a x i m u m  for  the  most  unstable  baroclinic  ~vaves. 

1. INTRODUCTION 

During recent years the  energetics of the  atnlospllwe 
have received much  attention  in  studies of the  general 
circulation. The  energy c o n ~ e r s i o ~ ~ s  which t a h  place 
between the  different forms of energv  have  been  conlputrd 
in theoret'ical studies  (Phillips [ 5 ] ,  Cllarney [a]), in  numrri- 
cal experiments  (Phillips [SI) a,nd in observational  studies 
(Wiin-Nielsen [lo], Saltzr~mn und Fleischcr [g]). Most of 
the work has been done in the  evaluation of the  conver- 
sion between pot'ential  and  kinetic  energy.  This  conver- 
sion has been computed from the  latitudinal  average of tlle 
flow, for the  deviations from t'hc averaged flow, and as a 
function of the  zonal  wave  nurnber. 

In the  present  st'udy we shall  again  consider  the  energy 
conversion between  pot,ent,ial  and  kinet'ic  energy,  but we 
shall divide the  kinetic  energy of the flow into  two  parts: 
the kinetic energy of t,lle vert,ically  int,egrated flow and t'lle 
kinetic energy of the  deviat'ion from this flow, which  in 
the present study will be called the  shear flow. 

The total  energy  conversion between potential and 
kinetic energy  computed from observations is fo11nrl to 
he positive at  any  time. One  might  think  that  the  kinetic 
energy creat8ed by conversion  from  potential  energ- could 
be used partly  to  increase  the  kinetic  energy of t,he 
vertically averaged flow and  partly  to  increase  the  shear- 
flow kinetic  energy.  The  energy  conversion  between 

potential  and  kinetic  energy  depends  on  the  correlation 
between the vert'ical  velocit,y  and the  temperature. 
Excluding  external  gravity  waves  by a simplified lower 
boundary  condition,  it is well-known that t'he  vertically 
averaged flow becomes non-divergent. It is therefore  to 
be  expected  t8hat  t'he  kinetic  energy  created  by conversion 
from potential  energy will increase the  kinetic  energy of 
the  shear flow. 

The  investigation will proceed  along tlle following lines: 
W e  shall first'  show that  the  kinetic energy of the hori- 
zont,al,  hydrostatic flow can  be expressed as the sum of 
the kinetic  energy of the  vertically  averaged flow and  the 
shear flow. Sex t ,  we shall  show  t'hat  energy  converted 
from potential  energy goes into  the  shear flow. It follows 
then  that  there  must  be a t'ransforrnat'ion of energy 
bct'ween the  shear flow and  the  vertically  averaged flow. 
When we have  det'errnined  this  energy  transformation 
function,  which we shall  speak  about as transformation 
between shear flow and  mean flow, we are  in  a position to 
det,erruirle the  mechanism  which  cont'rols  whether  the 
kinetic  energy  is  stored  in  the  shear flow or  in  the  vertical 
nlean Aow. 

The energy  conversion  between the  shear flow and  the 
mean flow is first  determined  in  the  general case of the  non- 
filt'ered equat'ions.  Next, we find  the  same  energy conver- 
sion for the filtered  (quasi-non-divergent)  equation,  and 
we can make a conlparison  between the two conversions. 



312 MONTHLY WEATHER REVIEW AUGUST 1962 

In  order  to  get  an  insight  into how t'he  energy  conversion 
may depend  upon the scale of the  motion we finally  use, 
as  an  example,  simple  sinusoidal  two-dimensional  waves 
to  compute  the  energy  conversion  as a function of the 
wavelength. 

2. KINETIC  ENERGY OF MEAN  FLOW  AND  SHEAR 
FLOW 

The  vertically  integrated flow will be defined bj- the 
following operat'or 

where p is pressure  and p ,  the  surface  pressure. 

zontal wind in  the  form 
Using (2.1) we may  write  the  components of the her-i- 

u=,ii+u', v=V+v' (2.2) 
where naturally 

" U I = V / = Q  (2 2 )  

The  t'otal  kinetic  energy will be defined by the  integral 

where p is the  density, S the region of the whole sphere, 
and where we have  made use of the  hydrostatic  equation 
to  obtain  the  last  integral  in (2.4). 

Int,roducing  the  relations (2.2) in (2.4) and  lnaking use 
of the  relations (2.3) we obtain 

Or 

where 

3. ENERGY CHANGES IN TOTAL FLOW, MEAN FLOW, 
AND  SHEAR FLOW 

The  equations of motion  and  the  continuity equation 
will be used  in the following form: 

bu br b w  -+ -+-=o 
b.r by bp 

In (3.1) +=gz is the  geopot'ential, f tlle Coriolis param- 
eter, 9 t'he  acceleration of gravity, F, and F, the two 
components of the  frictional  force  per  unit mass. 

Multiplying  the  first  equtttion of mnption by u, the 
second by u, atltling  the  two  resulting  equations,  and then 
integrating  over  tlle  complete  atmosphere,  it  has been 
showrl  earlier (see for estinlple  Wiin-Nielsen [lo]) that 

Our  nest  object  is  to  derive  an  equation  for  the rate 
of change of the  kinetic  energ- of t'he  mean flow, dZ/dt. 
I n  order to do this it is necessary  first  to  obtain the 
equat'ions of  notion of the  vertically  averaged flow. 
These  equations  are  derived by introducing (2.2) in the 
system (3.1) and  applying  tlle  operator (2.1). We  arrive 
in  this \\rilY at  the following  set' of equ a t' ions: 

K=R+K' (2.6) 

1 

K will  be called the  total  kinetic  energy,  the  kinetic 
energy of the  vertical  mean flow, and K' the  kinetic  energy 
of the  shear flow. It will be  noticed  t'hat we have  not 
included the  vertical  motion  in  the  evaluations of the 
energies. 

The use of the  hydrostatic  equation  filters  out  sound 
waves, and we shall,  for  simplicity,  in  the following also 
exclude external  gravity  waves by using the  boundary 
conditions 

w=-=O dP p=O p - p  0- -100 cb. (2.8) 
dt ' 

J 
T h e  syste11l of equations (3.3) governs the development 

of the  vertically  integrated flow. The last  terms in the 
brackets on the left sides measure  the  contributions from 
the shetlr flow to the  locd nccelertltions in  the  mean flow. 
The vertically  integrtlted  cont'inuity  equation says that 
tile vertical 1ne:ln flow is non-divergent, Le., o . ~ = o .  
The latter  property is due  to  our simplified lower  boundary 
condition w=O for p=p,. 

We obtain nom the  rate of cl~ange of the  kinetic energy 
of the  mean flow by Inult'iplyirlg the first  equat>ion in 
(3.3) by U, tlle  second by ?;, adding  the  two resulting 
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equations and  integrating  over  the  complete  atmosphere, 
making use of the  third  equation  in  the  system  (3.3). 
When this  procedure is carried out, we arrive at  the 
following equation: 

We rnay transform  t'he  integrand  in the  first  integral 
of (3.4) first  in the following  way: 

The last  two expressions may further be translorlned 
using the  identities 

bu'c' br'c' 4 [ 1 -+"= - (u'2+7P) +e.'r.V'+u'<' (3.8) dx b y  by 2 1 
where j" is the  relat'ive  vorticity of the s h e u  flow. 

the form 
Using the  relations (3.5)-(3.S) x\-e ma?; write  (3.4)  in 

or 

If we subtract (3.10) from ( 3 . 2 )  we get: 

While (3.2) gives t'he  change of the  total  kinetic  energy, 
(3.10) and  (3.11)  determine the  rate ol change of the 
kinetic energies of the  mean flow and  the she:Ir flow. On 
the basis of these  formulas we may state  that the last 
integral in (3.10) measures  the  frictional  dissipation of the 
kinetic energy of the  mean flow. This  integral  depends 
only on the  mean  wind  and  the  mean  frictional  force. 
The last  integral of (3.11) gives the  frictional  dissip' <L t' ion 
of the shear flow. This  integral  contains  only  the  shear 

wind  and  the  deviation of the frict,ional force from its 
mean  value. 

With  respect  to t,he direct  conversion of potential  to 
kinetic  energy,  measured by  the first  integral  in ( 3 . 2 ) ,  we 
notice that  this  int'egrnl o d y  appears  in  (3.11).  This 
means  that  the  kinetic  energy,  created  by conversion from 
potential  energy, goes directly  into  the  reservoir of the 
kinetic  energy ol the  shear flow. 

Findly,  the first  integral  appearing  in (3.10), and  with 
the  opposite  sign  in  (3.  I I )  , measures  the  energy conversion 
between  the  shear flow and  the  mean flow. Since we a.re 
going to  investigate  this  integral  in  some  detail  in  the 
following  sections, we shall  denote  it 

{K' .F)  =-~s[V.(v .V ' )Vf+(3xk) . r " ]dS (3.12) 

I I  the  int'egral is positive, we have  a conversion from 
t'he  kinetic  energy of the  shear flow to  the kinetic  energy 
of the  mean flow. 
In the  general  form (3.12) {K'.K} depends  on  the  value 

of two  integrals. The  integrand  in  each  integral is a 
scalar  product of t'wo vectors. In t'he  first  integrand we 
find the  scalar  product of the  mean  wind, v, and  the 
vertical  average of the,  shear  wind  weighted  with  the 
divergence. The second  integrand is the  scalar  product 
of the  mean  wind  turned 90 degrees in a clockwise 
direction  and  the  vertical  average of the  shear wind 
weighted  with a relat'ive  vort'icity of the  shear flow. 

The  last  term  in (3.10),  which  is the opposite of the 
frictional  dissipation of the rnetm flow, is most likely 
negative  since  the  mean  frictional  force  tends  to be oppo- 
site t'o the  mean  wind. In  the  long  term  average it follows 
therefore that {K'.E} measured  by  (3.12)  must be  positive 
since  t'he  kinetic  energy of the  mean flow probably does 
not' c~lange significantly  in tile &earl over  a  long  time. 

A further discussion of the  relative  importance  and 
interpretation of the t'wo terms in (3.12) will be  given in 
the  later  sections,  but' we not'ice that a numnerical evalua- 
tion of both of t'he  terms is possible from  atmospheric 
wind data  supplemented  by a diagnostic  cornputation of 
the  horizontal  divergence. 

4. ENERGY  TRANSFORMATIONS  BETWEEN  SHEAR 
FLOW AND  MEAN FLOW IN  QUASI-NON-DIVERGENT 

MODELS 

The  derivation  in  the  preceding  section was  based on 
the  non-filtered  equations of motion. It is of interest  to 
find the  energy  conversion  between  shear flow and m a n  
flow also in  the  filtered  equation  or  in  other words, in  a 
quasi-non-divergent  model. It is t'o be  expected that  the 
first int'egrd  in  (3.12) will be missing in  this model,  since 
it  appears  due  to  the  divergence of the  horizontal,  isobaric 
wind.  This  divergence is neglected  in the  most  simple 
quasi-non-divergent  model. We shall  in  the  derivation 
use the  mean  wind  and  the  shear  wind  as defined by (2.2) 
and (2.3)  and also the  kenetic  energies as given b>- ( 2 . 7 )  



except that  the  horizontal  wind  components, u and r ,  while tllc third  term i n  (4.9) will be  integrated to 
now are considered to  be non-divergent. 

vort’icity  equation in  the form: 
The prognostic  equat’ion for the model is now the (4.11) 

If we subtract (4.3) IroIn (4.1)  after  substitution ol‘ 
(4.2), we obtain  the  prognostic  equation  lor  the shear flow: 

The  khet’ic energy of the mean flow m a > -  in this case 
be  written 

(4.5) 

since we only consider the  ltinetic  energy of the 11011- 

divergent w i n d .  From (4.5) it follou-s that: 

In a sirnilar way we obtain 
~‘Ollseqllelltly: 

(4.16) 

(4.17) 

(4.18) 

( 4 3 )  

It is seen fro111 (4.6) and (4.8)  thtit we can obtaill 
- expressions for d R j d t  and dK’/dt by lnultiplying (4.5) by 
$, (4.4) by $’, and  then performing the integrations. 
Bpplging  this  procedure first to  (4.3) we get: 

The second term will integrate  to zero,  because 

\Te find again  comparing  (4.20) to (3.11) that  the part 
of the integrand depending on the  horizontal divergence 
is missing. 

‘l’hc lnain difference between tl11 iutegration of the 
primiti\-e  equations  nr~tl  the  quasi-non-divergent equation 
with respect to  the  energy conversion fro111 the shear flow 
to the mea11 flow is  therefore, the sign ant1 order of magni- 
tude of the irltegrtd 
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Before we try  to look  into  this  question we shall  special- 
ize the  general expressions obt'ained  for  the  quasi-non- 
divergent model  to  the  two-parameter case and  investigate 
the ratio  between the  energy  conversion  from  shear flow 
t'o niean flow and  the  energy  conversion  between  the 
potentrial energy  and  the  shear flow. This  rat'io is a 
measure of the  amount of kinetic  energy  stored  in  the 
shear  flow. 

5. THE TWO-PARAMETER,  QUASI-NON-DIVERGENT 
CASE 

Since the  derivations  given  in  the  preceding  sections 
separate between  the  shear flow and  the  vertical  mean 
flow, we shall  in  the following  use a two-parwnletric 
representation of the  atmosphere,  which mhkes the  same 
separation. Such  a  formulation  has been  given by 
Eliassen [3] and used by Phillips [7]. Using  Phillips' 
formulation we may  write  the  assumptions in the  form 

V=V+V'=V+A(p)VT, W= -poB([j)C.VT (5.1) 

where A ( p )  and B(p)  are  functions  satisfying  the contli- 
tions 

We may define a vertical  velocitv w* by the relation 

( . x 3  2 w* 

Po 
"_ - V'VT 

With this  notation we can  write  the,  prognostic  equa- 
tions in the  form: 

1 

In (5.4) $T is the  stream  function  for  the  thermal flow- 
and X2 is defined as: 

The  energy  conversion  from  potent,ial  energ>- to kinetic 
energy of the  shear flow is  according to (4.20) 

(5.6) 

which in  the  two-parameter case reduces  to 

P.K' ] = - %s w *$'~ds (5.7) 
B s  

644790--62-"2 

because 

The  energy  conversion  from  kinetic  energy of the  shear 
flow to  the  mean flow in  this  model is 

(5.9) 

{P.K'}  has  earlier  been  computed  by  the  author  from 
atmospheric  data  as well as  for  simple  sinusoidal flow 
pattern. It is obvious  from (5.9) that  is relatively 
easy to compute  from  atmospheric  data.  Equation (5.9) 
shows,  in  fact,, in the  two-parameter  case  that we  will have 
an energy  conversion  from  the  shear flow to  the  mean flow, 
if rT and (-VT.VT) are  positively  correlated. Since 
(-VT.v$) is negative  in  regions of warm  air  advection  and 
positive  in  regions of cold air  advection, i t  is seen, that  in 
order  to  t'ransfer  the  kinetic  energy  from  t'he  shear flow to 
the  mean flow  we must,  on  the  average,  have  the cold air 
advection  in  regions of cyclonic,  relative,  thermal  vorticity 
and  warm  air  advection  in  regions of anticyclonic,  relative 
thermal  vorticity.  This  arrangement of the  t'hermal  pat- 
tern  relative  to  the  mean flow is  possible, if the  thermal 
waves on  t,he  average  are  lagging  behind  the  waves  in  the 
mean flow. The  mean flow loses kinetic  energy  continu- 
ously  due to the  frictional  loss  (last  integral  in (3.10)). 
I n  order  to  maintain  the  mean flow it is therefore necessary 
that {K'eR} is  positive  and  therefore that  the  thermal 
waves  lag  behind  the  waves  in  the  mean flow. The  last 
result  has  been  obtained by FjGrtoft [4] from  somewhat 
different  considerations. 

T n  order  to  estimate {E'.&? 1 and {K'.KJ for  simple 
flow patterns we need an  evaluation of the  vertical veloc- 
ity.  The  equation  for  the  vertical  velocity  can  be  obtained 
from  the  second  and  t'hird  equations of (5.4) giving: 

v 2 w * - 2 x z w * = ~  x2[v2(s.v$T) - ~ . v y T - v T . v ( ~ + f ) ]  
f o  

(5.10) 

If we select flow pattern described by 

and  consider  a  rectangular  region of length L and  width 
2W (y=O in the middle of the  channel),  it  turns  out  that 
the  solution  to (5.10) can be written: 

w*=R cos kx cos py+S sin kx cos py+T sin 2py  (5.12) 

where 
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t (5.13) 

J 
Using the expression (5.12) we can  substit'ute  into (5.7) 

and  obtain: 

(5.14) 

From  the flow pattern (5.11) we can  subst'itute  into 
(5.9), which  turns  out  to  be: 

The  last  term  in t'lle bracket i n  (5.14) is a measure of the 
energy  conversion  between  t'he  mean  potential  and  mean 
kinetic  energy,  which  can  be  seen by  separating  the fields 
into  a  zonal  mean  and  deviations  lrorn  the  zonal mean. 
Denoting  the  zonal  mean  by  a  subscript 2 and  the  eddies 
by a  subscript E we have: 

(5.16) 

and  it is easily  seen that 

Restricting  ourselves  to  t'he  eddies we have: 

Comparing (5.15) and (5.18) it is seen that  both of these 
quantities {P,.KA} and {K'.K}, are  positive if aT>O, i.e., 
if the  temperature field is lagging  behind  the  pressure 
field. It is  furtrher  seen t'hstt the t'wo conversions  depend 
on the  amplitudes  and  the  thermal  zonal  wind  in  the  same 
way, but  that  they  depend  differently  on  the  scale of the 
motion. 

The dependence on the scale of the  motion  for {P,.K;} 
was computed  earlier by the  author (Wiin-Nielsen [lo]). 
It suffices therefore  here  to  consider  t'he  ratio  between 
{K' .z}  and {P,.KA}. We  get 

{K' .K}/{P, .K; ,}  =-+- 1 k2+p2  
2 4x2 

(5.19) 

e- 4-  

Y 
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The ratio  (5.19) is illustrated  in figure 1 for different 
values of the meridional  scale as a  funct'ion of the zonal 
scale  with X'=:!..ixIO-" n1." (2147) is actually  a half 
w-tlvelength in  the  nleridional  direction. 

T h e  esselltinl results  illustrated  in  figure 1 are  that for 
the  sndl-sc:de  tnotion :L larger  alriount of kinetic energy is 
tr:-tlnsfor~ned into  kinetic  energy of the  mean flow than is 
converted  from the av:ailable potential energy. On the 
sniall scale there is therefore a depletion of the kinetic 
energy  in  the shear flow. On  the  other 1 1 ~ 1 ~ 1 ,  the figure 
shows also that ~ I I  wxurnulntion of kinetic  energy takes 
place on the large scde in t h e  shear flow, since  the amount 
transl'ormed to  kinetic  energy of the mea11 flow is smaller 
than  the  amount  convert'ed from potential  energy as long 
as the  n~eridional  scale is large. On the  nlediun~ scale 
(1,=:5,000-5,000 l m ~ )  t'llere is no st'ornge of kinetic energy 
in the shear flow, again as long RS the rrleridional scale is 
large  enough.  Since {P,.Kb) has a  maxinmnl around 
3,000-5,000 h n . ,  where  t'he  baroclinic  instabilit'y is largest 
(Wiin-Sielsen [lo]), our  results show that no storage takes 
place in  the  greatest-amplitude  waves  in  the  shear flow, 

As is see11 from  the figure and from (5.19) t'lle ratio 
becomes very  large, if the scale is small (p and k large). 
Suppose now that we have some positive  or negative 
conversion  from  potential to kinetic  energy  on  the small 
scale.  According to (5.19) we should  therefore expect a 
rather  violent  reaction  in  the  conversion  between shear 
flow and  mean flow kinetic  energy.  Since t'lle flow at  a 
certain  pressure  level  (usually 600 or 500 nlb.) is used to 
represent  t'he  mean  now,  the  latt'er  fact  nlay  explain why 
me often find appreciable  small-scale noise in  the predic- 
tions  with  baroclinic models. This noise is not solely 
due to  t,he numerical  procedures, but is aggravated  by the 
physical  properties of the quasi-non-divergent,  model. 
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6. ~ ~ L C U L A T I O N  OF ENERGY CONVERSION FROM in  the  preceding  formulas.  The  southernmost  latitude, 
OBSERVED  DATA &, was  taken  to  be 20' N. Both of the  integrals  in 

The  energy  conversion  between  slmw flow and  mean 
flow kinetic energies can be  evaluated froln observed dat,a 
as rerriarked at  the  end of sect>ion 3. The  co~n~uta t ions  
were made  with  data  from  January 1959, using 850 and 
500-mb. d a h .  These dat'a were, selected hecrruse t'hey 
entered into  an  earlier  computation of energ\-  conversion 
between available  potentid  and  kinetic  energy  (Wiin- 
Nielsen [lo]). Both of the integrals ilr (3.12) were 
approximated and  evaluat'etl once a da>* usillg n procedure 
as described below. 

With data  available  only  at two  levels  for  Jtlnunry 1959 
we are forced  to use a two-parameter  representation of 
the type  given  in  section 5 .  As shown  in that section 
we may  write  the  basic expression (3.14) in the  form 

{K'-B]=-F!J [V-V.(8.V,)+r,(BXk).VT]rlS (6.1) 
.(Is 

We introduce  tlhe  not a t' Ions: 

The integral (6.5) mws evaluated 1 ) ~  computing  the 
thermal, relat,ive  vort'icity  and the Jucol>ian at   the grid 
points in  t'he JNWP octagonal grid. These values were 
next interpolated  to a latitude-longitude  grid  using n grid 
size of 2.5'. The  integral 1 1 ~ ~ -  then  conveniently  be 
evaluated using the  form: 

where I,(+) is defined by  the equatioll 

u is the radius of the  earth, 4 is latitude, and  X longitude 

(6.6)  and (6.7) were evaluated using  finite  sums  and  an 
increment of 2.5'. 

The second  integral  in (6.2) may  be  evaluated  in  a 
similar way. A special  problem  arises  due  to the presence 
of the divergence.  This  quantity was evaluated using 
the  available  vertical  velocities  which  are  supposed  to 
apply  at  the 600-mb.  level  according  to the model  assump- 
tions  in  t'he JNWP operational model.  We get, using 
(5.1), that  

again  using  Eliassen's [3] estimates of BCp). 

(6.11) 

The integrals (6.10) and  (6.11) were  again  evaluated 
11)- finite  sums  using  a 2.5' grid  size. 

The  mean  values  for  the  month of January 1959 from 
31 evaluations  for iK'.RjND t'urned  out  to  be  4.3X10-4 
kj. r n P 2  sec." while {&?-E}, was  -0.47X10-4  kj. m.-2 
sec.". We  find  therefore that  {K'.E}, is slightly  more 
than 10 percent' of the  values for{K'.Z},. The  standard 
deviat'ions ol the  two  mean  values  are  1.5X10-4kj. In:-2 
sec." and  l.lX10-4 kj. n ~ - ~  sec.". 

ft should  furt'her  be  mentioned  that  the  totmal energy 
conversion 

{ ~ ' . 3 $ ~ ~  + { K'.BJ 
turlled out  to  be  positive  for  each  day, which  means that 
the  transformation  constantly goes from  the  shear flow 
kinet'ic  energy  to  the  mean flow kinetic  energy. 

Solne  remarks  should  be  made a t  this  point  regarding 
the  approximations which are used in evaluating  the  two 
energy  transformation  integrals.  The  first  integral is 
evaluat'ed  using  non-divergent  winds at  both levels. The 
balance  equation  was  solved  for  t'he  stream  function at the 
500 and  850-mb.  levels  and #d was  obtained  by  subtraction. 
This  int'egral is therefore  evaluated as it would  be  in a 
quasi-non-divergent  model. The second  integral is also 
evaluated  using  vertical  velocities  and  non-divergent 
winds  from  an  adiabatic,  frictionless,  and quasi-non- 
divergent  model.  Such an evaluation is naturally  an 
approximation  because  the  integral is connected  with  the 
advection  with  divergent  wind  components.  However, 
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FIGURE 2.-The correlation  between  thermal  relative  vorticity and 
temperature  advection  expressed as an  energ-  convcrsion :is x 
function of latitude. 

diagnostic  computations of the  divergent wind co~nponents 
have  shown that  they  are  small  compared  to  the  non- 
divergent  components,  and  the  evaluation is therefore :x 
good first a,pproximat'ion. 

The two  averaged figures for  the  conversion  from  shear 
flow to mean flow kinetic  energy  may  be  compared  with 
the  conversion  from  available  potential t'o shear flow 
kinetic  energy. The  latter conversion  was cornputecl 
earlier by  the  author (Wiin-Nielsen [lo]), using data from 
the  same  month,  to  be 14.0X10-4 kj. n1.?  sec.". The  
total  coiversion  from  shear flow to  mean flow is 3 . 8 ~  10-4 
kj. n1.+  sec.", which  means  according  to  these  estimates 
that  about 27 percent of the  available  potential  energy, 
which is converted,  eventually  gets  into  the ~nean  flow 
kinetic  energy,  where it is dissipated  through  friction. 
The  dissipation is measured by  the  last  integral  in (3.12). 
However if a quasi-non-divergent  model is used  about 
30 percent of the  converted  available potent'iwl energy 
goes into  the  mean flow kinetic  energy.  These  numbers 
suggest that a difference of about 10 percent will exist 
between forecasts  made  with  the  most  simple  quasi-non- 
divergent  model  and  a  more  advanced  type of prediction 
model  based upon  thevorticity  equation  or on the  equ a t' 1011s 
of motion  themselves. 

The  ratio  between  the  two  energy  conversions, (K'.K} 
and {P-K'} ,  is  measured  to  be  somewhat  smaller  t'han  the 
estimate  obtained  from (5.19) which  was  evaluated  using 
a  linearized  approach. The difference between the  two 

I I I I I I 

'i 

I I I I 1 I 

LATITUDE 
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FII:[:RE 3.-Co11tributions to  the  total  conversion of shear flow 
kinctic energy to  mea11 flow kinrtic  energy  from  the divergent 
part of thc.  flow from diffrrent latitude bands. 

results ooultl indicate t h a t  there is a  systematic under- 
estiniate of {K'.xj. If this is the case, i t  is probably 
due  to  the  fact  that  only data from  the lower part of the 
troposphere  have  been used in  the  observational part of 
the study. From a similar  study  using a greater vertical 
resolution  one  would  be  &le to tell  whether  or not the 
suggested  explanation is correct. 

Figure 2 illustrat'es  the  contribution  from  the different 
lat8itude  bands to the  integral  The ordinate 
is  given in the  units of an energy  conversion, but due to 
t'lle fact  thatm the ht i tude rings cmnot  be considered as 
energetically closed with any degree of approximation one 
should  t'hink of tlle  curve  in figure 2 as illustrating the 
correlation  between  the  thernlal,  relative  vorticity and 
the  temperature  advection. I t  is seen that t'he result 
of the observational  stud)-  agrees  with  the remarks 
given  in  sect'ion 5 in  the  sense that cold (warm)  air advec- 
tion is positive1.v correlated  with  regions of cyclonic 
(anticyclonic),  thermal  vorticity,  or  in  other words that 
the  temperature field on  the  average  lags behind the 
height  field.  An  exception  to  this  is  found  in  the low- 
latitude  part of tlle  region south of 30' N. where  a negative 
correlation  exists.  It is further seen that  the greatest 
contribution is found  in  the  lniddle  latitudes with the 
rnnxinlum appearing a t  42.5' X. 

Figure 3 contains  the  curve  illustrating  the contribu- 
tions  from  the  latitude  bands  to  the  integral {K ' .x }D.  
We find a positive 1naximu111 at' 52.5' N. and minima at 
85' N., 42.5" X., and 35' X. A comparison between 
figure 2 and figure stlows that {K'.Rj, at  a11 places is 
small  compared  to {K'.RIAvD. One may therefore state 
that  the  major  part ol' the  energy  conversion between 
shear flow and ~nean  flow is contained  in  the quasi-non- 
divergerl t  niodel. 
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7. ENERGY CONVERSIONS  IN THE WAVE NUMBER 
REGIME 

As in  earlier  studies of emrgy conversions  computed 
from observed  atmospheric d a h ,  it has been  found of 
interest to  compute  the  energy  conversion  between  the 
vertical shear flow and  mean flow in  the  wave  number 
regime (Wiin-Nielsen [lo], Saltzman and Fleischer  [g]). 
The technique  which has been  used in this  study is slightly 
different from  the one used in the earlier study  by t'he 
author. The  main  steps  in  the  computations will be 
described below for the case of t'he c.onversion {K'.R},, 
in the two-parameter  case. 

{K'.R},, is  in  this Case given by the following formula 
(see (6.6)) 

1 
(7.4) 

and corresponding expressions apply  for A,,(+), L4n(+), 
and Bn(+), we can  write L(+) in  the following  form: 

A7 

(7.5) 

(7.8) 

where 

The values of the  tllermal,  re,lat'ive  vorticitS and the 
temperature advection  were  as  before  computed  in  all 
interior points of the  JNWP octagonal  grid.  Values 
were then obtained  in a latitude-longitude  grid  with a 

grid size of 2.5' by  interpolation.  The  Fourier  coeff- 
cients ad+>, an(+), bn(+),  An(+), An@), and B,(+) were then 
computed lor each  latitude circle from 20' N. to 87.5O N. 
(a total of 28 values of each coefficient) using  finite  sums 
in  the  evaluation of the  integrals  in (7.4) and  the corre- 
sponding  lorrnulas for Ao(+), An(+), and Bn(4). The 
final  values of {K'.E}?J were then  computed  from (7.9) 
replacing  the  integral  by a finite  sum. 

In  t'he  earlier  evaluat'ion of t'he conversion  between 
available  pot'ential  energy  and  kinetic  energy (Wiin- 
Xielsen [lo]) it' was found  that  the waves  with  wave  num- 
bers  larger  than 10 gave  very smttll contributions  to  the 
total  spectrum. It was  therefore  decided to  set N=10.* 

A completely  analagous  procedure  was  used  to  evaluate 
the  integral {K' .R},  in (6.10). The Fourier  analysis 
wws here  performed  on  the  quantities W63 and P ( J / 5 ,  + d ) ,  

and N was again  equal  to  10. 
The calculat'ions  were  carried out  for each  day of Jan- 

uary 1959. The  results  consist of the 11 values of 
{ K ' . ~ ~ j ~ f o r O I n I l ~ a n d c o r r e s p o n d i n g v a l u e s o l { K ' . ~ ~ ~ '  

lor t'he  same  values of n. The  sums {K'.?7) EA and 

{K'-Ej :' can  be  compared  wit'h  the  total  values of 

{K' .K}ND and { K'.R}, computed  in  section 6. The 
comparison gives how  large  a  fraction of the  total  energy 
conversion we can  explain  by  the  first 10 wave  numbers. 
We  find  in  both cases that  the  contribution  from wave 
numbers  wit'h n>10 is  not  negligible  (compare  the 
foothot'e). 

Figure  4  shows  the  spectrum of {K' .K}ND computed  as 
the  average  over  the  spectra  for  the  individual  days of 
January 1959. The  unit  is lo8 kj. sec.", and  the figure is 
comparable  with  the  corresponding  figure for the conver- 
sion  from  available  potential  energy  to  kinetic  energy  in 
Wiin-Xielsen [lo]. The figure  shows a maximum con- 
version of kinet'ic  energy  from t'he shear flow to  the mean 
flow for n=7, which is almost  the  same  scale  on which we 
find tmhe  maximum  conversion  between  potential  and 
kinetic  energy of the  shear flow. There  is  an  indication 
of a second  maximum on the  planetary scale  (n=1), 
but t'his  maxirnurn is not  as  pronounced  as  the corre- 
sponding rnxximurn in {P.K'} .  We  arrive  therefore a t  
the  tentative conclusion that  the baroclinic  waves  with an 
amplification  rat'e close to  the m,axirnum rate  are  the  most 
import'ant in tjhe  maintenance of the  kinetic  energy of t'he 
vertical mean flow against  frictional  dissipation. 

Table 1 gives the  mean  values  and  standard  deviations 
(8) of the energy  conversions {K'.ZjrvD corresponding to 
figure 4. The  rather  large  values of the  standard de- 
viations  present'ed in  table 1 show  that  there is a consider- 
able  scatter  around  the  mean  values  in  figure  4  and  table 1. 

In  view- of the  theoretical  results  derived  in  section 5 
from a sirn,ple linear  treatment,  it is int.eresting  to  compute 

10 

10 
n =O 

n=O 

*In retrospect it  turns  out  that it would  have h e n  better  to use a somewhat larger 
value of N, because  the  thermal  relative  vorticity  and  the  temperature  advection  both 
tend  to  have  considerahle  amplitudes for  large values of the  wave  number. 



320 AUGUST 1962 

WAVE-NUMBER 

the  ratio  between  the  energy  conversion between the 
kirlet'ic  energies of the shear flow and  tlle  mean flow and 
the conversion  bet'ween  potential  energy  and  the kinetic 
energy of t'he  shear flow. This rat'io  is  reproduced  in table 
2 .  The latter energy  conversion has been  taken from 
Wiin-Nielsen [IO]. 

The figures in  table 2 show  uat~urttlly a more irregular 
variation  than  the  curves  in  figure I, but  there is a quali- 
tative  agreement  to t,he extent  t'hat  the  rat'io between the 
two energ)- conversions  tends  to  increase for large values 
of the wave number  in  the  theoretical  curves as well  as in 
the figures obtained  from  observations. 

Figure 5 shom the  distribution of {K'.z}, as a function 
of wave  nulrtber  in the  average  for  January 1959. We 
notice first of all that'  the  magnitude of {K'az}, is small 
co~nptwecl to {K'.zIA-,  for all  wave  numbers.  This result 
agrees  with  the  result  obtained  in  section 6, where we 
considered  tlle  total  conversion  over all wave nulnbers. 
We find  further  agreement  to  the  extent  that {K'.jQD is 
negative lor most wave numbers. 'The only exception is 
the  srndl positive  conversions  for  wave  numbers 5 and 6 
given in  figure 5 .  

Table 3 gives  t'he  mean  values mtl  standard deviations 
(8) correspontling  to figure 5. We find as before t'hat the 
st:tntlard  deviations  show  a  large  scatter of the individual 
daily vdues  around  the  monthly  mean  value. 

Table 4 contains  the  values of the  ratiol{K'.E}D/ 
{K'.zjLVDl :LS a function of wave  number. The numbers 
in  this  table  are  obtained lrom the  average  values given in 
tables 1 and 3 .  Table 4 shows the  ratio is quite small for 
n 24. If these  results  are  significant, we arrive a t  the con- 
clusion t811at t'he  major part of the energy conversion be- 
t,ween the  kinetic energies of t'he  shear flow and  the verti- 
cally averaged flow is contained  in {K'.R},,. Some res- 
ervation  must  be  taken  to  this conclusion due  to  the fact 
that  we have  used  divergences  cornput'ed from a quasi- 
non-divergent)  model  to  evaluate {K'SR},. If the vertical 
velocit'ies and  therefore also the divergence  implied by 
such a model are systematicall)-  too  small, it  is evident 
that  the conclusion above could be  radically changed. 
Some insight  int'o  this  question  can  be  gained by evaluating 
the  two  eonrersions {K'.R},, and {K'.z}, using data 



from ext'entlecl numerical  integrations of ~notlels h s e d  
upon the  priniitive  equ. '1 t)' 1011s. 

For the  planetary  waves (1 <n18) we find so~newhat 
larger values of the rat'io given in  table 4. This ~vould 
indicate  t'hwt {K' .R},  is  more importmt  for  these waves 
than it is  for  the slnuller  scales in  describing  the conver- 
sion  of kinetic  energy between t'he s h e u  flow and t l ~ e  nlean 
flow. We are  again  forced  to express s011le resen 'a t '  ions 
to this conclusion. It has earlier  been pointed  out (Wiin- 
Nielsen [IO]) that  the  vertical velocities  ilnplied by LL 
quasi-non-divergent two-parameter illode1 could  be radi- 
cally changed by  heat  sources  and  sinks.  Since  the  evalu- 
ation of {K'.R}, in  this  paper ~nakes use of verticttl 
velocities computed f r o q  an adiabatic, frictionless  model, 
it  is evident that  the discussion  given i r  the earlier paper 
[lo] also applies  here. 

With the  reservations  ~nentioned above we  conclude 
therefore that  the  major part of the  energy conversion 
{K'.B) is contained  in {K'.R},,. 

8. ESTIMATES OF DECAY  TIMES 

In  connection with  the  computations we llnve nlade  it  is 
also of interest  to  compute  solne  lnewure of the  total 
amounts of kinetic  energy  in  the  vertically  averaged flow 
and in the  shear flow. A crude  estimate can be lnade of 
the ratio of these  quantities  from  the rnodel assumptions 
in a  two-puranleter model. Suppose  that the wind  varia- 
tions with pressure mere given by ( 5 . 1 )  with  the  function 
A(p) satisfying (5.2).  We would  then  have 

(8.1) 

where the  tilde (-) mcans an area avertage. 
The kinetic  energy in  the  shear flow would be: 

A crude first  estimate of R/K' can be  oht;~ined  from 
empirical data (Wiin-Ncilsen [ 1 2 ] ) ,  which  sllow that 

w 

- -10 20 'I? 
-40 "4 u 
-50L ' I I 

I I I I I I I I 
I 2 3 4 5 6 7 8 9 1 0  

WAVE- NUMBER 
Fr<: I 'RE 5."The energy  convcrsion {K'.a], as a furlction of wave 

number avcragcd in  time, for January 3959. 

l~l- l .S]VTl ,  which  means that  the  mean flow kinetic 
energy  is  about,  t'hree  t'ilnes  larger  than  the  shear flow 
kinetic  energy.  While  the  kinetic  energy of the vertically 
averaged flow thus is a few  times  larger  than  the kinetic 
energy  in  the shear flow it receives only a small fraction 
of the  total  amount  by  conversion  from  shear flow energy 
and loses naturally in the  average  t,he  same  amount  by 
frictional  dissipation. The  amount of shear flow kinetic 
energy,  on  the  other  hand, is A few times  smaller,  but n 
larger  fraction is received  by conversion from  available 
potential  energy  and  the  same arqount is naturally on 
the average  lost  by  conversion  t'o  mean flow kinetic 
energy t m d  by  frictional  dissipation. 

We may estimate  the  total  decay  time*  in  the two 
energy  reservoirs of rn'ean  flow and  shear flow kinetic 
energy. In order  to do this we need an  estimate of the 

letely. if the energy  supplies  were  cut off. 
*The total  decay  time is the time it would  take to empty  an energy reservoir comp- 
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amount of energy  in  the t'wo reservoirs. As a first  ap- 
proximation we have  taken  the  total  amount of kinetic 
energy in  the  atmosphere  in  the  wintertime as estimated 
by  Pisharoty [8] and  reproduced  by  Bjerknes  [l]. In  the 
layer between sea  level  and 10 cb. it amounts  to 38.4 x 1 O I 6  

kj.  for  the  latitude  band 17' to 77' N. or  22.6X  102kj. rn.?. 
This  amount was divided  between  the  mean flow and 
shear flow kinetic energies in  the  ratio 3:1, which gives 
R=16.95X102kj. In.?' and K'=5.65X102  kj. 1r1.-2. Tlle 
total  energy influx into  the  reservoir of mean flow kinet'ic 
energy is as  est'imated  in  this  paper  3.8X lop4 kj. m.? sec.", 
which gives a  t'otal  decay  time of 52 days. If we only 
consider the  contribution  from  the  quasi-non-divergent 
part we get an influx of 4.3X lop4 kj. r n ?  sec.-l, which 
gives the  total  decay  time of 46 days. 

The  total  energy  influx  into  the  reservoir of shear flow 
kinetic  energy  from  conversion  from  available  potentid 
energy is 14.0X10-4  kj. m.? sec." (Wiin-Nielsen  [lo]) 
but of this  amount  3.8X10-4kj. sec.",  goes into  the 
mean flow kinetic  energy,  which  leaves  10.2x10-4  kj. n P  
sec." in  the  shear flow kinetic  energy.  With  K'=5.65X 
lo2 kj. we get a total  decay t'irrle of 6.4 days, which 
then also is an  estimate of the frictional  dissipation 
lneasured by  the  last t'errn  in  (3.11). 

9. SUMMARY  AND  CONCLUSIONS 

The  total  kinetic  energy of the llorizont'al,  hydrostatic 
flow in the  atmosphere  may  be  divided  into  the  kinetic 
energy of the  vertically  integrated flow and  the  kinetic 
energy of the  deviat'ion  from  this flow, the  so-dletl 
shear flow. It is shown  that'  the  kinetic  energy gained 
by conversion from  pot'ent'ial  energy goes into  the kinetic. 
energy of the  shear flow. The energy  transforrnation 
between shear flow and mean flow is found  in  general 
and also in the special  case of the  quasi-non-divergent 
model. The  general forrriultl for  energy  transform' 'X t' 1011 

between shear flow and  mean flow may  be  shown to 
consist of two  terms of which one is forrnally  represented 
in the  quasi-non-divergent  model, while the  other will 
be  present  in  more  advanced models  based upon  the 
vorticity  equation or the  primitive  equat'ions. 

The  energy  conversion  between  shear flow and Illem 
flow and  between  available  potential  energy  and S ~ ~ A I  

flow kinetic  energy is evalutrt'ed in the  quasi-non-diver- 
gent case using a two-parameter  representation of the 
atmosphere. I t  is especially  shown that  the  ratio be- 
tween the  two  energy  conversions  tends  to become 
large  for  small-scale  motion,  but' less than  unity  for 
planetary flow. On t'lle intermediate  Rossby  scale we 
find  a  ratio close to  unity which means  t'hat  no  storage 
t,akes place in the  shew flow kinetic  energy  on  this 
scale. These  results  are  obtained  using  linear  equations 
with  finite  amplitude  disturbances  superimposed on a 
zonal current which varies  only  wit'h  pressure. 

Observed d a h  have been  used to  evaluate  the  energy 
conversion  bet'ween shear flow and  mean flow in a quasi- 

non-divergent  two-paranleter  nlodel.  Dat'a  from such a 
model  have also been  used to  estimate  the conversion 
due  to  the  divergent  part of the flow. It is found that 
the  latter is only  about 10 percent of the  former indicating 
that  the  largest  part of the  energS  conversion  in question 
is present  in a quasi-non-divergent model, and  t'hat only 
a s n d l   p a r t  will be  added  in  more  advanced models, 
especidly models based  upon  the  primitive equations. 

It is further  found  that  only  about 27 percent (in 
yuasi-non-divergerlt  models 30 percent) of the energy 
converted  irom  available  potential  energy goes into the 
kinetic  energy of the verticttl1)- averaged flow. 

The energy  conversion {K'.K} has also been evaluated 
as a l'unction of wave  number. I t  is found that 
{ I P . ~ } . ~ ~  is positive on the  average  and  llas a maximum 
around  wave  number 7 .  Tlle  conversion {K' .ZJD is 
nu~neric*wll>- lnuch s~nd le r  and tell&  to be  negative for 
lnost wave nun1l)ers.. 

Wiin-Nielsen  and Brown [l I]  have  recently estimated 
the  generation of available  potentid  energy  from exactly 
the same dwt:\ its h v c ,  been used in this  study. It turns 
out  that  the  genrrtltion of zonal  available potential 
energ:- amounts to  50X10-* k j . n r '  sec." on the average 
for Januwry 1959. Since the conversion  from available 
potential energ)- to shear flow kinetic  energy is estimated 
to be 14.4  kj.ln.? sec.", we find that 35.6 kj.m.? sec." 
is being  dissipated  from  the  reservoir of potential energy, 
or i n  other  words 71 percent of the  generation of zonal 
avwil:tble potent'ial  energy. Most' of the dissipation is 
due to a tlegrwdatioll of eddy  available  potential energy 
by tlirrbtltic processes. The conversion  from  shear flow 
kinetic  energy (3.8 kj.ln.? sec.") found  in  this paper 
lllenns that 10.6 kj.ln.-' sec." or 21 percent 3f the genera- 
tion of zonal  available  potent'ial  energy is dissipated 
l'rorn tlle  reservoir of shear flow kinetic  energy. As a 
resitlud we find that 8 percent is dissipated from the 
resen-oir of mean flow kinetic  energy. 

The nlost surprising  result is probably  t'he small 
frac.tio11 dissipat,ed  from  the  Inem flow kinetic energy. 
~f our estimate of {IS'.%?) as suggested  earlier is  too 
smdl  we would find a greater  fraction  being dissipated 
from  the  m.em flow kinetic  energy. On the  other hand, 
if the  result is correct i t  shows that'  t'he  total  decay time 
of the  ~nettn flow kinetic  energy is very  large. 
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